Introduction to Complex Numbers

IMPORTANT

Introduction to Complex Numbers: Overview

This topic covers concepts such as Complex Numbers, Basics of Complex Numbers, Complex Number System, Imaginary Unit "iota", Power of ' i ', Square root of a Negative Real Number, Real and Imaginary Parts of a Complex Number, etc.

Important Questions on Introduction to Complex Numbers

EASY
IMPORTANT

The value of the sum  n=113in+in+1, where   i= 1 , equals

MEDIUM
IMPORTANT

For positive integers  n1, n2  the value of expression 1+in1+1+i3n1+1+i5n2+1+i7n2 where  i=1 , is a real number if and only if

EASY
IMPORTANT

Which one is true?

HARD
IMPORTANT

Find the complex number with the least argument among the points on the circular disc z-6 i3.

HARD
IMPORTANT

Solve z2+z=0, where z is a complex number.

HARD
IMPORTANT

The points A, B, C represent the complex numbers z1, z2, z3 respectively in the Argand diagram. Show that ABC is equilateral, if and only if

1z1z2+1z2z3+1z3z1=0

MEDIUM
IMPORTANT

If α, β be any two complex numbers, prove that

α+α2β2+αα2β2=|α+β|+|αβ|

MEDIUM
IMPORTANT

Let z be such a complex number that z-1z-1 becomes purely imaginary. Show that z lies on a circle with centre 12(1+i) and radius 12.

HARD
IMPORTANT

If c is real, b=p+iq z=x+iy show that the equation b(z+z¯)+b¯(z¯-z)+c=0 represents two straight lines in the xy-plane and find the angle between them.

EASY
IMPORTANT

If i is a root of the equationx+1x=k  where k is a constant, find the value of ki2=-1.

MEDIUM
IMPORTANT

Do you think 4 is a complex number ? If so, why ?

MEDIUM
IMPORTANT

Find the value of (i+3)100+(i-3)100+2100

MEDIUM
IMPORTANT

If n is any positive integer, then find the value of 12i4n+1-i4n-1.

HARD
IMPORTANT

If x, y be real, z=x+iy and z-iz-1 be purely imaginary, then show that x122+y122=12.

HARD
IMPORTANT

If z=x+iy and if z-iz+1 be a purely imaginary number then show that the locus (in complex plane) of z is a circle.

HARD
IMPORTANT

If z=x+iy and if z-iz+1 be a purely imaginary number then find the equation of locus of z in the complex plane.

HARD
IMPORTANT

If z=x+iy and if z-1z+1 be a purely imaginary number then show that the locus of z is a circle in the complex plane.

MEDIUM
IMPORTANT

If z be a complex number satisfying the condition z+55, then find the maximum and minimum value of z+2.

HARD
IMPORTANT

If x+iy=32+cos θ+i sin θ, prove that x2+y2=4 x-3
 

EASY
IMPORTANT

1=1=-1-1=-1-1=i.i=i2=-1. Find out the wrong step(s) in this 'deduction'.